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Experimental and theoretical investigations were made of the instability and 
transition of the wake behind an axisymmetric slender body a t  high Reynolds 
number. The sound from a loudspeaker was used as an artificial disturbance. 
The velocity fluctuations induced by the sound are selectively amplified 
depending on the frequency. The wavelength, the phase velocity and the amplifi- 
cation rate of the velocity fluctuations were measured. A linearized stability 
equation of the disturbance superposed on the axisymmetric wake was solved 
numerically for both neutral and amplified disturbances. Theoretical results on 
eigenvalues and eigenfunctions of the stability equation show good agreement 
with experimental results. 

Measurements on phase distributions in streamwise and azimuthal directions 
indicate that the line of same phase forms a helix and not a series of discrete 
closed loops. 

1. Introduction 
In  the early stage of the transition from laminar to turbulent flow, a small- 

amplitude velocity fluctuation is either amplified or damped depending on its 
wavelength, frequency, etc. This selective amplification has been investigated 
by a linear theory, using the Orr-Sommerfeld equation. Solutions of the equation 
were obtained for various flow fields. Experimental verifications of the theoretical 
results were made for the boundary layer along a flat plate by Schubauer & 
Skramstad (1948), for the two-dimensional jet by Sat0 (1959) and for the two- 
dimensional wake of a thin flat plate placed parallel to a uniform flow by Sat0 & 
Kuriki (1961). When the amplitude of the fluctuation exceeds a certain value, 
non-linear effects become significant. The fluctuation tends to be three- 
dimensional and the wave-form is distorted. The flow becomes turbulent either 
by a gradual change of the wave-form of the velocity fluctuations or by a sudden 
breakdown. 

The structure of the three-dimensional wake has long been an interest of many 
investigators. Marshall & Stanton (1931) observed the wake of a circular disc 
placed normal to the water flow. The dye trace in the wake showed an unsteady 
pattern when the Reynolds number based on the disc diameter exceeded about 
300. They concluded that there was a periodic discharge from the disc of a series 
of rings of vortices. The wake of a sphere in a water tank was observed by Moller 
(1938). From pictures of the flow pattern he found a spiral vortex in the wake in 
a certain range of Reynolds numbers. Recently, a detailed experiment was made 
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by Kendal (1963) on the velocity fluctuation in the wake of a sphere in a low- 
turbulence wind tunnel. From the experimental results on the phase and vorticity 
distributions, he suggested the existence of a helical vortex filament in the wake 
when the Reynolds number is of the order of 1000. These experiments are con- 
cerned with the wake of bluff bodies. In  order to clarify the stability character- 
istics of the wake, we have to start with a laminar and disturbance-free flow. 
Bluff bodies usually generate high-level velocity fluctuations. 

An analysis of the stability of an axially symmetric jet was made by Batchelor 
& Gill (1962). They extended the Orr-Sommerfeld equation to the axisymmetric 
flow and determined a neutral wave-number a t  an infinite Reynolds number. 
An experiment of the stability of a circular jet of water into water was made by 
Viilu (196a), who obtained the minimum critical Reynolds number, based on the 
diameter and the mean velocity, as about 10. Reynolds (1962) made an experi- 
mental investigation of a circular jet and found several modes of instability at 
Reynolds numbers above 10. In  his experiment a spiral pattern of dye was 
observed when the Reynolds number was around 100. Theoretical and experi- 
mental investigations on two-dimensional jets and wakes have shown that the 
stability characteristics of both flows are very much alike. The objective of the 
present investigation is to clarify the behaviour of small-amplitude velocity 
fluctuations in the wake at  a relatively high Reynolds number, of the order of 
1000, Experimental results are compared with the theoretical results based on 
the linearized equation of motion. 

2. Experimental arrangement 
The experiment was conducted in the no. 2 low-turbulence wind-tunnel at the 

Institute of Space and Aeronautical Science (formerly Aeronautical Research 
Institute). The tunnel is a non-return type and has test section of 60 by 60cm 
cross-section and 300 cm length. The residual turbulence level is around 0.05 yo 
at a flow velocity of 10 m/sec. 

In  order to investigate the stability of the laminar wake, a slender and sharp- 
tailed axisymmetric body was placed in the test section parallel to the flow. The 
body was 30cm in length and 0-6cm in maximum diameter, the generatrix 
approximating a symmetrical aerofoil. The steel body was ground and polished 
until the surface became like a mirror; the tail tip was made as sharp as a sewing 
needle. The Reynolds number, based on the free-stream velocity and the di- 
ameter of the body, ranged approximately from 1000 to 8000. The shape of the 
body and the general layout of the test section are shown in figure 1. The 
cylindrical co-ordinate system (X, r ,  #) is used, where the origin is at the tail tip 
of the body, X is the distance measured downstream, and r and # are the radial 
distances from the axis and the azimuthal angle, respectively. 

The body was suspended at two positions by V-shaped fine tungsten wires 
from the ceiling of the wind tunnel. Since Reynolds number based on the diameter 
of the suspending wire was about 25 a t  a flow velocity of 10 m/sec, no shedding of 
vortex from the wire was expected. Each end of the wires was connected to a 
screw-gear which was mounted above the ceiling. These four screw-gears were 
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used for the alignment of the body. For consolidating the parallel setting, a 
survey of the mean velocity was made in the wake, and the four screw-gears were 
turned until the velocity distribution became symmetrical in the vertical and 
horizontal planes. This was actually one of the most tedious tasks in the experi- 
ment, for it was found that the alignment must be accurate to within 0.1" in 
order to realize an axisymmetric wake. Since the symmetricity of the wake was 
destroyed by the deposit of tiny dust particles on the body, it was carefully 
cleaned before each experiment. 

6 mm 

. _I.-_---- 

t 
30 cm 

Loudspeaker 
mechanism 

FIGURE 1. Layout of test section. Shape and dimensions of axisymmetric body. 

The mean velocity and fluctuation velocity were measured by conventional 
constant-current hot-wire equipment. The compensated frequency response of 
the hot-wire and amplifier system was flat from 20 to 10,000 cycles/sec. A 10 % 
rhodium-platinum wire of 0-005 mm diameter was used. The length of the wire 
was about 1.5 mm. The hot-wire was moved by a D.C. motor in cross-stream and 
streamwise directions. The position of the hot-wire was transformed into a D.C. 
voltage by a potentiometer. The accuracy of the positioning was about 0.1 mm. 
An X-Y  recorder was used for recording distributions of various flow quantities. 
A dual-beam cathode-ray oscilloscope was used for photographic recordings of 
the wave-form as well as for the measurements of the phase of velocity fluctu- 
ations. The spectral components of velocity fluctuations were observed by using 
a band-pass filter. 

The wake of the body was excited artificially by introducing the sound from 
a loudspeaker into the test section, as shown in figure 1. The intensity of sound 
was uniform throughout the test section and no resonance effect was observed. 

3. Experimental results 
The radial distribution of the mean velocity at  a flow velocity of 10m/sec is 

shown in figure 2. In  this case, the wake was artificially excited by the sound of 
230 cycles/sec. The excitation was necessary for the experimental results to be 
reproducible. The transition of a laminar wake is initiated by the residual turbu- 
lence in the wind tunnel, and in a low-turbulence tunnel the level of the residual 
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fluctuation is extremely low and beyond our control. It may be different from one 
run to another, and this difference was responsible for the poor reproducibility 
of ‘natural transition ’. The controlled artificial disturbance improves the repro- 
ducibility. The level of the sound was made high enough to mask the residual 
fluctuations; on the other hand, the intensity of sound must be low enough to 
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FIGURE 2. Mean-velocity distribution. U ,  = IO.Om/sec. 0, 9 = 1 cm; 0 ,  X = 20cm; 
A , X  = 40cm; A , S  = 60cm; v,X = 100cm. 
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FIGURE 3. Streamwise variation of central velocity U,. U ,  = IO.Om/sec. 
0, Without excitation; 0 ,  with excitation, 230 cycles/sec. 

avoid disturbing the flow too much. The 230cycles/sec frequency of exciting 
sound was chosen to be close to the frequency of fluctuation in the natural 
transition. 

The radius and the central velocity of the wake increase downstream and distri- 
bution is almost similar from 3 = 20 to 60 em. The distribution a t  X = 100 ern is 
different from others and very flat near the centre line. The streamwise variation 
of the central velocity V,  non-dimensionalized by the free-stream velocity U, and 
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the half-value radius r,, non-dimensionalized by the maximum body radius R are 
shown in figures 3 and 4. The half-value radius is defined as the radius at which 
the velocity defect is half the maximum defect. Two facts are demonstrated in 
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FIGURE 4. Streamwise variation of half-value radius r, non-dimensionalized by the msxi- 
mum radius of the body R. U ,  = lO.Om/sec. 0, Without excitation; 0 ,  with excitation, 
230 cycles/sec. 
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FIGURE 5. Non-dimensional mean-velocity defects. U, is the velocity on the axis. 
U ,  = lO.Om/sec. 0 , X  = 60cm; 0,S = 80cm. 

the figures. First, both U, and ro do not change much between X = 20 and 80 cm. 
This means that the flow is almost parallel. The radial flow must be very small 
compared with the axial flow. Secondly, the effect of excitation is small in the 
region S < 80 cm. The central velocity and the half-value radius are not affected 
by the excitation down to X = 80 cm, at which both quantities start increasing 
rapidly and the laminar-turbulent transition of the wake seems to take place. 

16 Fluid Mech. 26 
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The similarity of velocity distribution is demonstrated more clearly in figure 5, 
in which non-dimensionalized velocity defects a t  X = 60 and 80 em are plotted. 

A velocity distribution given by 

m o -  U)/(U,- Uc) = exp [-a(r/r0)21 ( 1 )  

is shown with a solid line in the same figure. Here, a ( = 0.69315) is a numerical 
factor for making (U, - U ) / (  U, - U,) = 0.5 at r = r,. The expression (1) is a solution 

6 10 14 18 22 
Free-stream velocity (mjsec) 

FIGURE 6. Frequency of natural u-fluctuations plotted against free-stream 
velocity U,. Solid line indicates f cc U i .  

of the axisymmetric laminar-boundary-layer equation applied for the wake. In  
the equation the momentum defect is assumed constant in the axial direction 
and (U, - U)z  is neglected in comparison with U;. The agreement with experi- 
mental results is fairly good. 

When the free-stream velocity exceeds about 8 misec, velocity fluctuations 
with almost sinusoidal wave-form appear in the wake. The dominant frequency 
of the observed fluctuations in the natural transition is plotted against the free- 
stream velocity in figure 6. It is difficult to measure the frequency accurately 
because the frequency itself seems to fluctuate. Data shown in the figure are 
values averaged over several minutes. A simple dimensional analysis suggests 
that the frequency might be proportional to U,/ro. Since the half-value radius r,, 
is nearly proportional to 11 JU,, the frequency might be roughly proportional to 
%he 4 power of the free-stream velocity. The solid line in the figure indicates this 
relation and experimental points lie near the line. 

In  figure 7 is shown a map of the fluctuation patterns a t  a free-stream velocity 
of 10m/sec with the exciting sound of 230 cycles/sec. The radial distance is 
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enlarged for clear illustration. It is impossible to draw a map in the case of no 
excitation because the fluctuation field is not reproducible from one run to 
another. The wave-forms of the fluctuations taken at various positions in the 
flow field are shown in the figure. The wake is laminar to start with; there is no 
velocity fluctuation between X = 0 and 20cm. The velocity fluctuation with 
sinusoidal wave-form first appears at  about X = 20 cm in the off-axis region. At  

Irregular 

:bulent 

J J J 

FIGURE 7. Map of fluctuation patterns and oscillographic records of u-fluctuations. 
U ,  = 10.0m/sec. Time, from left to  right, and the interval between dots, 10msec. 

about X = 70 cm the wave-forms near the axis become irregular. For S > 80 cm 
the region of irregular fluctuation expands very rapidly. The second harmonic 
fluctuation, namely the fluctuation with doubled frequency of exciting sound, 
is sometimes observed near the axis. The intensity of this fluctuation is far 
smaller than that of the fundamental component. A detailed observation shows 
that the second harmonic fluctuation increases when the body has an angle of 
attack to the flow. As mentioned earlier, the body was carefully aligned to the 
free stream, and when the alignment was considered to be perfect, the second 
harmonic fluctuation was extremely small. 

Radial distributions of the root-mean-square value of the fluctuating velocity 
with the excitation are shown in figure 8. The intensity reaches the maximum a t  
about S = 100 cm. There is a remarkable increase on the axis from X = 80 cm 
to  X = 100 cm. This may be related to the increases of irregular fluctuation near 
the axis shown in figure 7. 

Using a band-pass filter which was tuned to the frequency of the exciting 
sound, measurements were made of the amplitude and phase of the spectral 
components. Distributions of the amplitude of the spectral component of 
230 cycles/sec are shown in figure 9. All distributions including those a t  X = 100 
and 120cm show two distinct peaks and become nearly zero on the axis. Com- 

16-2 
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parison of figures 8 and 9 indicates clearly that the irregular velocity fluctuations 
contribute t o  the large value of (G)* on the axis at large X. Peaks in the distribu- 
tions of the spectral component are located a t  about the radii of the maximum 
aUlar. At X = 120 cm peaks are found considerably further from the axis. This 
fact is consistent with the rapid widening of the wake a t  large X shown in 
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FIGURE 8. Radial distribution of intensity of u-fluctuations. Excitation, 230 cycles/sec. 
U ,  = lO.Om/sec. 0, S = 40cm; 0,  x = 60cm; A, 9 = 80cm; A, S = 100cm; v, 9 = 120cm. 
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FIGURE 9. Radial distribution of the amplitude of the spectral component. The ordinate is 
in arbitrary scale, while the r lative values at  various 5-stations are shown correctly. 
Excitation, 230cycles/sec, 77, = 10.0m/sec. 0, S = 40cm; 0 ,  X = 60cm; A , x  = 80cm; 
A, X = 100cm; v, x' = 120cm. 
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figure 4. Streamwise variations of the maximum values of the amplitude of the 
excited spectral components at each 5-station (G)&max are shown in figure 10 
in a semi-logarithmic plot. The band-pass filter was tuned to the frequency of the 
exciting sound which was varied from 175 to 425cycles/sec. In  the region 
S < 80 cm, the amplitude increases exponentially with S. The spatial amplifica- 
tion rate is given by a gradient of each straight line. The gradient is different for 
different frequencies. The overall velocity fluctuation (u2)* does not grow expo- 
nentially in the 5-direction since this fluctuation is the sum of various spectral 
components which are amplified with different amplification rates corresponding 
to their frequencies. 
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FIGURE 10. Streamwise growth of spectral components. U ,  = 10.0 m/sec. The ordinate scale 
is arbitrary. Excitation: 0, 175cycles/sec; 0 ,  230 cycles/sec; A, 325 cycles/sec; A, 425 
cycles/sec. 

Phase relations of velocity fluctuations were observed in azimuthal, radial and 
axial directions by taking the correlation with a standard signal. The sound from 
the loudspeaker was used as the phase standard because the sound had a definite 
phase relation with the induced velocity fluctuation. Experimental results indi- 
cate that the phase of velocity fluctuation changes in azimuthal, radial and 
streamwise directions. As is shown in figure 11, the phase at  the constant radius 
varies almost linearly with the azimuthal angle and changes 360" for one turn. 
Since the phase changes linearly also with the streamwise direction, the line of 
the same phase is a helix and not a closed loop. This fact suggests the existence 
of a helical vortex system in the wake. However, this cannot be stated with 
confidence because vorticity measurements have not been made so far. The 
radial phase distribution is shown in figure 12. The phase difference a t  any two 
symmetrical points with respect to the axis is almost 180" and the phase jumps 
about 180" on the axis. The streamwise distribution of the phase is shown in 
figure 13. The phase angle changes linearly in the streamwise direction. The 
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period of the phase distribution gives the wavelength of the velocity fluctuation. 
The wavelength, the spatial amplification and the distributions of the amplitude 
and phase are to be compared with theoretical results in a later section. 

A 
FIGURE 11. Azimuthal distribution of the phase of velocity fluctuation. Excitation 

230 cycles/sec. U ,  = lO.Om/sec. 0, S = 40cm, r = 0.24cm; A, 9 = 80cm, r = 0-26cm. 

- 180° 
FIGURE 12. Radial distribution of the phase of the spectral component. Excitation 

230cycles/sec. U ,  = lO.Orn/sec. 0, X = 60cm; .,A' = 70cm; A , 3  = 80cm. 

4. Stability theory of an axisymmetric wake 
Theoretical investigations of the stability of axisymmetric free boundary 

layers such as jets and wakes are rather scanty compared with those of two- 
dimensional flow. Batchelor & Gill (1963) made an analysis of the stability of an 
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axisymmetric jet. They investigated fundamental features of the stability of 
axisymmetric free layers in general. They showed a necessary condition for the 
existence of neutral oscillations and calculated a neutral wave-number of jet at  
an infinite Reynolds number. The stability characteristics of jets and wakes are 
very much alike. Gold (1964), in his investigations of the stability of jets and 
wakes of compressible fluid, extended the condition given by Batchelor & Gill 
to the compressible flow. In  order to compare the experimental results with 
stability theory, however, one has to calculate not only the neutral disturbance 
but also amplified disturbances. We follow the same procedure used by Batchelor 
& Gill and calculate the amplified disturbances numerically. 

FIGURE 13. Streamwise distribution of the phase of the spectral component. Excit>ation 
230cycles/sec. U ,  = lO.Om/sec. r = 0.3cm. 

The flow is assumed to be incompressible and inviscid. It is known that the 
stability characteristics of free boundary layers do not depend on the Reynolds 
number when the Reynolds number is large. The critical Reynolds number of the 
axisymmetric jet seems to be, according to the experiment of Reynolds (1962), 
less than 300. In  the present experiment the Reynolds number based on the 
diameter of the body and the free-stream velocity is around 4000, which seems 
to be large enough to make the viscosity effect negligible in the stability 
calculation. 

The linearized equation is derived from the Navier-Stokes equation by the 
conventional procedure. The flow quantities are non-dimensionalized by the 
free-stream velocity U, and the half-value radius r,,. The mean flow is assumed to 
be axisymmetric and parallel. The following linearized equations are obtained 
for the disturbance velocities u,, u,., u4 and pressure p in non-dimensional forms: 
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in which U( r )  is the mean velocity and p is non-dimensionalized by pU$ 
Fluctuating components are resolved into Fourier components of the form 

i 
u, = Re [F(r)exp{in$+ia(x-ct)}], 

u, = Re [iG(r) exp {in$ + ia(x - c t ) ) ] ,  

uI = Re [H(r )  exp {in$ + ia(x - ct ) } ] ,  

p = Re [P(r) exp {in$ + ia(x - c t ) } ] ,  

(4) 

where F ,  0, H and P are complex amplitude functions, a is the wave-number and 
c = c, + ici is the complex wave velocity. Since the phase angle between u, and u, 
is 90" as shown in equation (3),  we put u,cc iG. The periodicity of the fluctuation 
with respect to the azimuthal angle $ is given by an integer n. When n = 0, the 
velocity fluctuation is axially symmetric; in other words, the phase does not 
change in the azimuthal direction. When n = 1, the fluctuation is in the sinuous 
mode. The phase angle of this mode varies linearly in the azimuthal direction and 
changes 360" for one turn around an axis. The phase of the fluctuation with n = 2 
changes 720" for one turn. 

On substituting (4) in equations ( 3 )  and (3) we obtain 

a ( U - c ) F + U ' G  = -aP, ( 5 )  

~ ( U - C ) G  = P', (6) 

( 7 )  

(8) 

a( U - c) H = (n / r )  P ,  

aF + Gf + (G/r) + (n / r )  H = 0, 

in which a prime denotes differentiation with respect to r. By eliminating F ,  H 
and P from equations (5) to ( B ) ,  we obtain a single equation as to G, 

( U - c ) -  - (U-c )G-rG-  (9) 

Boundary conditions are given on the axis and at infinity. The conditions to be 
satisfied a t  infinity are simply that the amplitude functions F ,  G,  H and P tend 
to zero as r -+ 00. The conditions on the axis are found from equations (5) to (8). 
Conditions on the axis for n = 0 are 

F ,  P:  finite, 

G = H = O  a t  r = 0 .  
Conditions for n = 1 are 

F = P = O ,  

G =  -H:finite at  r = 0. 
Conditions for n = 2 are 

P = G = H = P = O  at r = 0 .  (12) 

Detailed discussions on boundary conditions are found in the paper by Batchelor 
& Gill (1962). 
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From equation (9),  the following expression is obtained when ci = 0 ,  

From this equation Batchelor & Gill derived a criterion that gives a necessary 
condition for the existence of the neutrally stable disturbance. They applied the 
criterion for an axisymmetric jet with a velocity distribution given by 

u = I/( 1 + @)2, (14) 

and concluded that the disturbance with a =t= 0 can exist only for n = 1.  They 
actually obtained a solution for n = 1 by numerical integrations. 
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FIGURE 14. Theoretical results on the rate of amplification and the propagation 
velocity. Amplified disturbance for mode n = 1.  

In  the present calculation the velocity distribution (1) was used because it fits 
better than (14) to experimental results. In  the non-dimensional form U is 
expressed as 

in which a = 0.69315 and q is the maximum value of the velocity defect. Con- 
sidering experimental results, we take q = 0.3. For the velocity distribution such 
as (15) unstable fluctuations are excluded for n = 0 as pointed out by Batchelor 
& Gill. We used Batchelor & Gill’s criterion for this velocity distribution and 
found that the solutions for neutral disturbance may exist only for n = 1 and 
n = 2 .  Numerical integrations for the neutral disturbance were made for both 
values of n. A solution was obtained only for n = 1 and no solution was obtained 
for n = 2 .  This is not surprising, because the condition given above is a necessary 
condition but not a sufficient one. Gold (1964) made an analysis of the stability 

U = 1-qexp(-ar2), (15) 
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of the compressible axially symmetric wake and concluded that the sinuous mode 
is the most unstable one. According to his description, the instability of a sinuous 
mode is closely related to the fact that the radial component of disturbance is 
allowed to exist on the axis. 

Numerical calculations for the amplified disturbances were performed for n = 1 
by the Runge-Kutta procedure using an OKITAC 5090 electronic computer. 
Eigenvalues of ci and c, are obtained as functions of the wave-number a as shown 
in figure 14. The maximum value of the amplification rate mi is 0-0126 at a = 0-54 
and c, = 0.852 and the maximum value of the spatial amplification rate aci/c, is 
0.0148 a t  a = 0.55 and c, = 0-851. Computed results on distributions of amplitude 
and phase of amplified fluctuations are to be compared with the experimental 
results in the following section. 

5. Discussion 
In  the process of experimental investigation two facts became clear. One is the 

poor reproducibility of the so-called natural transition. The transition of the 
wake behind a streamlined body can be initiated by the residual turbulence in 
the wind tunnel, because the disturbance generated by the body is extremely 
small, and since the intensity and the frequency spectrum of the turbulence may 
not be the same for each experimental run, reproducibility is not assured. The 
introduction of an artificial disturbance is essential for studying the stability of 
free boundary layers such as jets and wakes. The other fact is the effect of tiny 
dust particles on the body. When the dust deposits on the body, the fluctuation 
in the wake increases and the velocity defect recovers very rapidly. Moreover, 
since the dust deposits only on the upper surface of the body, the axisymmetry 
of the wake is destroyed. 

The wake of an axisymmetric streamlined body is divided into four regions: 
the laminar, the linear, the non-linear and the turbulent regions. 

The laminar region in the present experiment extends about 20 cm from the 
tail tip of the body. The boundary layer on the solid body is laminar. After the 
boundary layer separates at the tail tip it rearranges itself to form a laminar 
axisymmetric wake. The increase of the velocity on the axis is remarkable. At 
about X = 20 ern the mean-velocity distribution settles into a similar distribu- 
tion. When the disturbance in the flow is small, it  grows after the wake becomes 
similar. On the other hand, if the disturbance is large, it is expected that the dis- 
turbance grows in the non-equilibrium region of the wake. The latter is the case 
for the wake of a blunt body. 

The linear region follows the laminar region and extends from S = 20 to about 
70 em, in which the spectral component of the velocity fluctuation grows expo- 
nentially downstream. In this region the flow field is approximately parallel and 
the mean velocity distribution is kept almost unchanged. The radial distribution 
of the intensity of the velocity fluctuation has two peaks and shows a small value 
on the axis. The experimental results at  U,, = 10 m/sec and S = 60 ern are com- 
pared with the theoretical results of the mode n = 1 in figures 15, 16 and 17. 
Eigenvalues are compared in figure 15. The wave-number a plotted against the 
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frequency ac, shows a good agreement. The non-dimensional frequency corre- 
sponding to the neutral disturbance is 0.820. Concerning the amplification rate 
a time-space transformation is necessary. In  the stability theory the disturbance 
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Frequency ac, Frequency ac, 

FIGURE 15. Wave-number a and spatial rate of amplification aci/c, against 
non - dimensional frequency ac, . 

Amplitude (arbitrary scale) 
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FIGURE 16. Amplitude function of amplified fluctuation. 0, Experimental 
results at 3 = 60 cm. In theoretical results a = 0.475 and ci = 0.026 

is amplified as a function of time. In the experiment, however, the disturbance is 
amplified in the direction of flow, with the spatial amplification rate aciIc,.. The 
agreement between the theory and the experiment is fairly good but not as good 
as that with the wave-number. In figures 16 and 17 the amplitude and the phase 
are compared. Theoretical curves in both figures are for eigenvalues corresponding 
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to experimental conditions. The agreement is, in general, good. In  the experiment 
a 180" phase-jump a t  about ./yo = 2 is not observed. As shown in the amplitude 
distribution, the amplitude around r/ro = 2 is very small and the phase couldnot 
be measured. The phase changes linearly in the azimuthal direction. These 
experimental and numerical results indicate that the behaviour of a small- 
amplitude velocity fluctuation in this region is explained by the linearized 
stability theory and that in the axisymmetric wake the velocity fluctuation of 
the mode n = 1 exists. 

FIGURE 17. Radial phase distribution of amplified fluctuation. 0, Experimental 
results at S = 60 cm. In theoretical results a = 0.475 and ci = 0.026. 

The non-linear region then extends downstream. The amplification rate of the 
velocity fluctuations is no longer exponential. While velocity fluctuations lose 
their regular periodicity, still the wave-form is not completely irregular. The 
half-value radius and the central velocity start increasing very rapidly. This 
implies the action of Reynolds stress on the mean velocity. The production of 
a velocity fluctuation due to the non-linear effect causes the increase of irregular 
components, especially near the axis. In  figure 8 a remarkable increase of the 
intensity of fluctuation at x' = l00cm is illustrated. The non-linear region is 
followed by the turbulent region in which no periodicity is found in the wave-form 
of fluctuation. No detailed measurements were made in this region. 

There is an important difference between the two-dimensional and the axi- 
symmetric wakes in the second-harmonic fluctuation, that is, the fluctuation 
with the doubled frequency. The second-harmonic fluctuation was clearly 
observed in the two-dimensional wake of a thin flat plate (Sato & Kuriki 1961) 
and in the wake of a circular cylinder (Roshko 1953). The transverse phase distri- 
bution of the second-harmonic fluctuation was symmetric with respect to the 
central plane. On the other hand, the second-harmonic component was observed 
in the axisymmetric wake only when the body had an angle of attack. The com- 
ponent was observed near the axis but the distribution of the amplitude was not 
axisymmetric. 
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6. Conclusion 
The experimental and theoretical investigations of the axisymmetric wake 

behind a stream-lined slender body indicate that the wake is classified into four 
regions, which are the laminar, linear, non-linear and turbulent regions. In  the 
laminar regions the separated laminar boundary layer develops into the laminar 
wake. In  the linear region the mean-velocity distribution is kept almost un- 
changed and the flow is almost parallel. Small-amplitude velocity fluctuations 
in a certain frequency range are amplified as they travel downstream. The 
measured wavelength, amplification rate and distribution of the amplitude and 
phase are in good agreement with the results of linearized theory. The phase 
measurements in azimuthal and axial directions indicate that the line of the same 
phase forms a helix and not discrete loops. In  the non-linear region the production 
of an irregular velocity fluctuation is observed but the second-harmonic com- 
ponent is not found. The regularity in the wave-form of fluctuation is gradually 
lost in the non-linear region. The turbulent region is established without any 
bursts or sudden breakdown. 

The authors wish to express their gratitude to Professor Itiro Tani and Dr J. M. 
Kendall for their valuable suggestions, and to members of the Boundary Layer 
Research Group in Japan for their stimulating discussions. Thanks are extended 
to Messrs Y. Onda and S. Korenaga who helped to carry out the experimental 
work. 

R E F E R E N C E S  

BATCHELOR, G. K. & GILL, A. E. 1962 J .  Fluid Mech. 14, 529. 
GOLD, H. 1964 Private communication. 
KENDALL, J. M. 1963 Private communication. 
MARSHALL, D. & STANTON, T. E. 1931 Proc. Roy. SOC. A, 130, 295. 
MOLLER, W. 1938 Phys. Zeit. 39, 57. 
REYNOLDS, A. J. 1962 J .  Fluid Mech. 14, 552. 
ROSHKO, A. 1953 Nat. Adv .  Comm. Aero., Wash. T N  no. 2913. 
SATO, H. 1959 J .  Fluid Mech. 7, 53. 
SATO, H. & KURIKI, K. 1961 J .  Fluid Mech. 11, 321. 
SCHUBAUER, G. B. & SKRAMSTAD, H. K.  1948 Nat. Adv .  Comm. Aero., Wash., 

Rep.  no. 909. 
VIILU, A. 1962 J .  AppZ. Mech. 29, 506. 




